
Using SGX-Based Virtual Clones for IoT Security

Rashid Tahir
University of Prince Mugrin

r.tahir@upm.edu.sa

Ali Raza
Boston University

aliraza@bu.edu

Fareed Zaffar
LUMS

fareed.zaffar@lums.edu.pk

Faizan Ul Ghani
LUMS

mfgpk1286@gmail.com

Mubeen Zulfiqar
LUMS

18100211@lums.edu.pk

Abstract—Widespread permeation of IoT devices into our daily
lives has created a diverse spectrum of security and privacy
concerns unique to the IoT ecosystem. Conventional host and
network security mechanisms fail to address these issues due to
resource constraints, ad-hoc network models and vendor-centric
data collection and sharing policies. Hence, there is a need to
redesign the IoT infrastructure to secure both the device and
the data. To this end, we propose a design where users are
in the driving seat, devices are less exposed and data sharing
models are flexible and fine-grained. Our proposal comprises
hardware-secured data banks based on Intel Software Guard
Extensions (SGX) to house the data in clouds without the need
to trust the cloud provider. Virtual clones (shadows) of devices
running on top of these data banks serve as competent proxies of
actual IoT devices hiding away device weaknesses. The proposed
infrastructure is scalable and robust and serves as a good first
step for the community to build on and improve.

Index Terms—Internet of Things, Software Guard Extensions,
Security and Privacy

I. INTRODUCTION

IoT devices are largely characterized by a substantial lack of

computational resources. This fundamental limitation implies

that devices cannot put up meaningful defenses (which tend to

be resource-intensive) in the face of a motivated adversary. As

a result, there has been an upsurge in the number of attacks

reported for IoT devices, such as burglars breaking into homes

by compromising smart door locks [1], arsonists causing a fire

by abusing a smart oven [2] and complete strangers talking to

babies by hijacking baby monitors [3].
IoT devices are also being misused at a macro level, such as

the Mirai DDoS botnet [4], which allowed attackers to launch

the largest DDoS attack in history solely off of hijacked IoT

devices. Numerous other issues have been reported including

traffic hijacking, weak/flawed encryption (one alphabet long

keys), Man-in-the-Middle etc. [5], [6]. These problems stand

to grow further in severity as IoT moves into the realm of

critical applications, such as healthcare and life support where

vital devices like insulin pumps and pacemakers are becoming

increasingly more common [7] and attacks can prove to be

fatal.
Furthermore, given that devices collect large amounts of

fine-grained sensitive data using a wide array of sensors,

privacy has emerged as a major cause for concern [8]. For

instance, Samsung’s Smart TV recorded all conversations in

its vicinity to the extent that Samsung itself had to warn

consumers to not have any sensitive discussions near the de-

vice [9], [10]. Similarly, We-Vibe, which manufactures smart

vibrators and other adult toys, was found to be spying on its

users and gathering data of an extremely personal and private

nature without giving any warnings to the users [11]. In this

case, the vendor was hit with a class action lawsuit and settled

for 3.75 million dollars.

The fact that there is a growing need for IoT devices

to communicate with each other and share telemetry data

further exacerbates the situation. For instance, if a light sensor

installed on the window detects that it is getting dark, it needs

to speak with the smart bulb and smart blinds so as to have

them act accordingly. This implies that data of sensitive nature

could end up being shared with untrusted third-parties. Smart

home hubs [12] and connected vehicle platforms [13], which

serve as an interoperability layer for a wide variety of devices

to communicate are typical examples of devices sharing data

with each other. Currently, lack of security standards implies

that data is shared openly and in an all-or-none manner.

In light of these issues, we present the architecture of a

cloud-based service for integrating security, privacy and trust

into the IoT pipeline. Our proposal argues that users should

own the data that IoT devices generate and should have explicit

control over who to share the data with and at what granularity.

To this end, we leverage Intel’s Software Guard Extensions

(SGX) [14] to create hardware-protected enclaves in the cloud,

running virtual clones (shadows) of physical IoT devices and

storing and processing device-generated data before sharing it

with others. This allows us to put resource-intensive defenses

in the cloud to protect devices when they communicate with

malicious actors. Furthermore, sophisticated policy enforce-

ment mechanisms can be used to perform strict access control

and scrubbing of data before it is shared with others, giving

users complete control of who gets their data and at what

granularity. The design has several desirable properties and

implications. First, moving intelligence to the cloud allows us

to take advantage of more computing resources along with

other cloud-based features such as scalability, fault tolerance

and GPU-based analytics, all of which are lacking in IoT

devices. Second, the SGX-based design allows for device

management only via authorized users and removes the need to

trust the cloud vendor. Third, users can explicitly control data

sharing by selecting policies from a large collection of policies,

ranging from simple to complex (developed by the service

provider). Multiple policies can be compounded together to

create a pipeline for highly processed data. For technically

challenged users, the service provider can recommend default

policies based on the nature of sensor data and the need of the978-1-5386-7659-2/18/$31.00 ©2018 IEEE

requesting party. Fourth, devices communicate with each other

in a privacy preserving manner as data is processed, scrubbed

and encrypted before being shared. Fifth, the communication

model we adopt thwarts a large range of remote attacks,

as the attack surface is moved from resource-constrained

devices to their “bulky” clones in the cloud, where advanced

authentication mechanisms and in-depth defenses are able to

detect and prevent a variety of attacks from succeeding. The

proposed design is a work-in-progress, hence we briefly touch

upon implementation details and show a couple of preliminary

results towards the end.

II. PROBLEM SPACE

Before discussing the design, we first identify various

prominent problems with IoT devices and in later sections

attempt to address the highlighted concerns:

1) Trust: Within a closed ecosystem of IoT devices (such

as a group of security cameras connected to a base

monitoring station), there is an implicit trust assumption

leading to numerous problems if one of the IoT devices

or the base station gets compromised. Additionally,

due to the ad-hoc nature of affiliated networks, trust

boundaries become blurred resulting in a lack of checks

and balances when data crosses from the trusted to the

untrusted domain.

2) Lack of authentication: Insufficient authentication and

authorization mechanisms plague almost all classes of

IoT devices [5] such that some devices have a one

alphabet long password.

3) Insufficient encryption: There is a severe lack of data

transport encryption [5], [6] when devices communicate

with each other, their corresponding apps and or send

traffic over the Internet.

4) Improper storage of credentials: At times, data and

credentials are stored on the device itself, often in

plaintext form, or weakly encrypted due to lack of

entropy/randomness [15].

5) Denial of service: IoT devices usually have medium

to low resources making them vulnerable to resource

exhaustion attacks even if the adversary is not in the

vicinity of the device [16]. Furthermore, hijacked de-

vices controlled by botnet herders, can be abused to

flood users with unwanted packets (as in the case of

the Mirai Botnet).

6) Excessive data collection: Devices collect more data

than they need and at much finer granularity. Further-

more, data sharing models are static and cannot be

updated given different contexts (for instance a user

walking should share location data with a navigation

app less often as opposed to a user driving a car) [17].

7) Inflexible data sharing: Similarly, when communicat-

ing with each other, devices often share data openly

under rigid sharing schemes (typically all-or-none).

8) Data Leakage: Devices have poorly “sealed” storage

banks and leaky APIs, which can allow attackers to

exfiltrate data from the device. On the cloud side, there

Fig. 1. SGX-Cloud: Each enclave is owned by a particular user and can
either be a virtual user, gateway, device or simply a dashboard for a collection
of physical devices. The communication model only permits communication
between enclave owners and other enclaves by default. The users manage
their IoT devices via the enclave.

are vulnerabilities in the communication models which

result in data leakage and repudiation on part of the data

subscribers [5].

There are a host of other issues however, in the interest of

space we limit the discussion to the ones mentioned above.

III. SYSTEM DESIGN

Our system relies on Intel SGX to provide the basic root

of trust. However, SGX is simply a building block and needs

to be modeled onto the cloud as a service for our purposes

and hence, we discuss the notion of an SGX-Cloud. As the

name suggests, the provider would create SGX-instances or

enclaves for the users. The host machine would be owned

by the cloud service provider (CSP) but each SGX enclave

would be temporarily “rented out” to a particular user who

can cryptographically attest the software running inside. This

would allow useful security properties in the system, such as

confidentiality and integrity of user code and data.

Furthermore, each enclave would only be allowed to talk to

the enclave owner, or to other enclaves running in the cloud

creating a closed ecosystem of enclaves with well-defined

entry points allowing for a very small attack surface (Problem
2). Of course, enclave owners can configure enclaves to talk

to the outside world as well.

The communication model and working of the SGX-Cloud

is shown in Figure 1. Each enclave instance is bound to a

corresponding physical entity e.g., a user or company (virtual

user), or a companion device like a cell phone or hub (virtual

gateway) or an IoT device itself (virtual device). The poten-

tially unbounded resources on these virtual entities prevents

resource exhaustion attacks (Problem 5). The IoT device

itself should ideally have minimal code and functionality but

the clone running inside the cloud can support a whole host

of additional functionalities. The physical IoT device would

gather the data and perform minimal computations on it (if

necessary) and ship the data to its corresponding clone in

the cloud by first authenticating the SGX-based clone and

then encrypting all traffic in the clone’s public SGX key (or

exchange a session key). Once the data arrives to the clone,

it is processed and saved as per the directives of the enclave

owner (putting users in charge of their own data). Any party

interested in data generated by a particular IoT device, would

send a request to its corresponding SGX clone. However, the

requesting party has to send this request using its own SGX

enclave to enforce accountability and abide by the constraints

of the communication model. At this point, the user’s enclave

would invoke any access control policies specified by the

user. Furthermore, before the data is handed over to the SGX

enclave of the requesting party, it would be passed through

a scrubbing service to make sure that data is shared in the

form explicitly specified by the user (Problem 6). Once all

processing is done, data is sent to the requesting SGX using

its public key from Intel, meaning that this data can only be

decrypted inside an enclave on a particular receiving machine

tied to a specific organization or company (Problem 8). If the

requesting party does not own an SGX enclave, the user can

still pass on the data to them, however this would weaken the

security properties of the system. Data generated from the IoT

devices, if needed, can be cryptographically sealed and stored

directly on the cloud protecting against leaky storage as would

be the case on an actual device (Problem 4). This also gives

user full control of their data and store/share it as they deem

appropriate. Finally, inter-IoT device communication is only

done via the enclaves of the communicating devices, which

removes the need for an implicit trust assumption between the

same set of devices and is carried out using strong encryption

schemes after data is scrubbed (Problem 1, 3, 7).

IV. IMPLEMENTATION

For the SGX-Cloud we used Dell Precision Tower 3620 with

32GB RAM running Ubuntu 16.04.2 (Linux Kernel 4.4.0).

Given that SGX enclaves are extremely limited in what can be

run inside them because of I/O and system call restrictions, we

used the Graphene Library OS [18] to provide a basic runtime

environment. Graphene has already been ported to run inside

SGX encalves and provides support for functionality typically

needed by Linux applications.

As a proof-of-concept access control system, we imple-

mented a traffic server in Python (2.7.12) inside the Graphene

environment. This traffic server allowed us to control sharing

of data in the granularity specified by the user and acted

us a virtual switch to enforce the constraints of the inter-

SGX communication model. Furthermore, we also wrote a

few advanced access control and data scrubbing modules in

Python (e.g., to change granularity of accelerometer readings

or hiding faces from video data or modifying audio frequency

to prevent voice profiling on digital assistants like Alexa),

to demonstrate how advanced data processing happens on

the virtual clones. The traffic server and the aforementioned

modules were all set up in different enclaves and constituted

around 800 lines of code. Inter-enclave communication was

realized using traditional network protocols (TCP/IP) however,

we implemented an end-to-end encrypted pipeline to prevent

any snooping and data leakage. We also developed a RESTful

application using HTML and Javascript with a user-friendly

interface to help users specify access control or scrubbing

policies. Once a policy is selected, they are forwarded to a

Python-based web server (also housed in an enclave), which

parses the policies and forwards them to the traffic server in a

format that it understands. The traffic server then intercepts the

data streams arriving at the enclave-resident clone and applies

policies accordingly and forwards the results to the clone. The

components of our framework were geographically spaced

apart (different continents) to mimic realistic performance

overheads incurred by actual users of the service. Some results

are shown in the subsequent section.

To mimic a physical IoT device communicating with its

virtual clone, we set up two Graphene instances, one running

natively (representing a physical device) and the other one

inside an SGX (representing a clone) with a Python-based

daemon for syncing the state between the clone and native

instance. We chose Graphene for this primarily due to the fact

that it is a library OS and very similar to custom firmware

typically found in IoT devices such as Contiki OS [19] and

hence, it is a decent approximation.

V. EVALUATION

Since this proposal is still a work-in-progress, we discuss

some rudimentary results below focusing on data sharing and

privacy. Results pertaining to security have been omitted for

brevity as they were quite intuitive, such as improved authen-

tication, resilience to denial of service attacks or prevention

against device hijacking.

A. Quantifying the Latency Overhead

The overall latency function of the architecture is charac-

terized by the network/communication model as well as the

nature and depth of data processing (such as the number and

type of ACLs and scrubbing techniques deployed). To explore

these relationships in more detail, we first look at the delay

induced by the number of access control filters and scrubbing

policies on incoming telemetry data from an IoT device (such

as GPS coordinates or gyroscope readings). Figure 2 shows

how increasing the numbers of rules (making the data sharing

and processing policy more fine-grained) at the traffic server

increases the delay. We started with one rule and increased

all the way to 10k rules, where each rule was chosen at

random (such as an ACL or a rule designed to control data

0.00
0.10
0.20
0.30
0.40

1 Rule 10
Rules

100
Rules

500
Rules

1000
Rules

5000
Rules

10000
Rules

Ti
m

e
(s

)

Fig. 2. Overhead due to increasing the number of packet level rules.

Ti
m

e
(s

)

No Encryption
No Filtering

Encryption On
No Filtering

Encryption On
25% Filtering

Encryption On
50% Filtering

Encryption On
75% Filtering

0

0.2

0.4

0.6

Fig. 3. Time taken for 100,000 packets to be sent to our service and received
back, for different filtering scenarios. The first bar represents pure network
overhead incurred by routing and link traversal without any encryption.

sharing or processing to requesting applications). As apparent

from the figure, the overhead is not related to the number

of rules applied on the data stream. This implies that a user

can have multiple rules and policies to govern data sharing

and processing without substantially impacting the latency

overhead.

Another interesting aspect to explore is how the granularity

of the control mechanisms impact delay. For instance, given a

data stream how does the filtering intensity (such as mild vs.

agressive) impact latency. To explore this issue, we measure

the overhead introduced by our system in different scenarios

including no filtering, 25%, 50% and 75% filtering (percentage

of packets dropped from the stream). To this end, we send a

total of 100k packets to the SGX enclaves and wait for the

packets to be received back for each filtering scenario and

repeat the entire experiment 5 times. As shown in Figure 3, the

time taken for 100,000 packets (encrypted end-to-end) to arrive

at the server, pass through the filtering policies, get decrypted

and passed onto the application and then get encrypted again

and return to the originating device (to cater to the scenario

where the app returns some sort of response) does not depend

on the degree of filtering intensity. This makes sense intuitively

as well since packet filtering and routing is done at line speed

and does not introduce noticeable overhead. For the same

reason, additional hops on the path do not add any significant

latency. We repeat the same experiment without any encryption

involved to measure what part of the overhead is incurred

due to encryption and what part is due to the networking

operations. The blue colored bar shows the time taken in the

former case. As evident, the bulk of the overhead is due to

routing and link traversal, which devices will have to incur

even without our service if they share data over the Internet.

The part of the overhead introduced by our service is therefore,

tolerable.

VI. CONCLUSION

IoT devices are radically refactoring the way we perceive

our lives and have become commonplace. However, this spread

has also led to the emergence of serious security and privacy

challenges for IoT devices that need to be addressed urgently.

We propose that IoT devices and gateways should be be thin

clients with limited functionality. The core functionality should

reside in secure and trusted domains in the cloud achieved

via Intel SGX enclaves offered as a cloud service. We define

a strict communication paradigm for the SGX cloud, which

prevents a broad range of attacks on the infrastructure. Our

design addresses numerous security and privacy concerns typ-

ically associated with common IoT devices by superimposing

the strengths of hardware-centric secure clouds and foolproof

mandatory access control frameworks on to IoT devices.

REFERENCES

[1] T. Denning, T. Kohno, and H. M. Levy, “Computer security and the
modern home,” Commun. ACM, vol. 56, no. 1, pp. 94–103, 2013.

[2] G. Ho, D. Leung, P. Mishra, A. Hosseini, D. Song, and D. Wagner,
“Smart locks: Lessons for securing commodity internet of things de-
vices,” in Proceedings of the 11th ACM on Asia Conference on Computer
and Communications Security, AsiaCCS 2016, Xi’an, China, May 30 -
June 3, 2016, 2016.

[3] Watch out, new parents internet connected baby monitors are easy to
hack, https://tinyurl.com/yby6t6k2.

[4] “The Botnet That Broke the Internet Isn’t Going Away,” September
2016, https://tinyurl.com/h6uuzcm.

[5] “Internet of things research study,” 2015,
http://www8.hp.com/h20195/V2/GetPDF.aspx/4AA5-4759ENW.pdf.

[6] “House of Keys: Industry-Wide HTTPS Certificate and SSH
Key Reuse Endangers Millions of Devices Worldwide,” November
2015, http://blog.sec-consult.com/2015/11/house-of-keys-industry-wide-
https.html.

[7] J. Radcliffe, “Hacking medical devices for fun and insulin: Breaking
the human scada system.” Black Hat Conference presentation slides.
Vol. 2011, 2011.

[8] Ray Manpreet Singh Matharu, “Personal Data Management in the
Internet of Things,” thesis, University of Waterloo, Waterloo, Ontario,
Canada, 2015.

[9] “The IoT threat to privacy,” August 2016,
https://techcrunch.com/2016/08/14/the-iot-threat-to-privacy/.

[10] “Complaint Letter by Electronic Privacy Information Center,” July
2015, https://epic.org/privacy/internet/ftc/EPIC-Letter-FTC-AG-Always-
On.pdf.

[11] “Maker of ‘Smart’ Vibrators Settles Data Col-
lection Lawsuit for $3.75 Million,” March 2017,
https://www.nytimes.com/2017/03/14/technology/we-vibe-vibrator-
lawsuit-spying.html.

[12] “SmartThings,” June 2017, https://www.smartthings.com/.
[13] “Microsoft Connected Vehicle Platform,” June 2017,

https://www.microsoft.com/en-us/internet-of-things/connected-vehicles.
[14] “Intel Software Guard Extensions,” June 2016,

https://software.intel.com/en-us/sgx.
[15] D. He, M. Naveed, C. A. Gunter, and K. Nahrstedt, “Security concerns

in android mhealth apps,” in AMIA Annual Symposium Proceedings, vol.
2014. American Medical Informatics Association, 2014, p. 645.

[16] V. Desnitsky and I. Kotenko, “Modeling and analysis of iot energy
resource exhaustion attacks,” in International Symposium on Intelligent
and Distributed Computing. Springer, 2017, pp. 263–270.

[17] “How to protect your privacy as more apps harvest your data,” May,
https://tinyurl.com/lw777qr.

[18] D. C. A. Bulterman, H. Bos, A. I. T. Rowstron, and P. Druschel,
Eds., Ninth Eurosys Conference 2014, EuroSys 2014, Amsterdam, The
Netherlands, April 13-16, 2014. ACM, 2014.

[19] “Contiki: The Open Source OS for the Internet of Things,” June 2016,
http://www.contiki-os.org/.

