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Abstract—The vast attack surface of clouds presents a chal-
lenge in deploying scalable and effective defenses. Traditional
security mechanisms, which work from inside the VM fail to
provide strong protection as attackers can bypass them easily.
The only available option is to provide security from the layer
below the VM i.e., the hypervisor. Previous works that attempt
to secure VMs from “outside” either incur substantial space
or compute overheads making them slow and impractical or
require modifications to the OS or the application codebase. To
address these issues, we propose an anomaly detection fabric
for clouds based on system call monitoring, which compresses
the stream of system calls at their source making the system
scalable and near real-time. Our system requires no modifications
to the guest OS or the application making it ideal for the data
center setting. Additionally, for robust and early detection of
threats, we leverage the notion of VM/container communities that
share information about attacks in their early stages to provide
immunity to the entire deployment. We make certain aspects
of the system flexible so that vendors can tune metrics to offer
customized protection to clients based on their workload types.
Detailed evaluation on a prototype implementation on KVM
substantiates our claims.

I. INTRODUCTION

The sheer volume and immense size of modern day clouds,

makes them hard to protect and consequently, vulnerable

to abuse. With a large perimeter and an intricate interior

(numerous middleboxes), clouds have a sizable attack surface.

Traditional defense mechanisms simply cannot scale to cover

the entire expanse and must be spread thin to protect against

more frequent vulnerabilities and exploits. As a result, hackers

have found numerous “entry points” to break into clouds,

using either network or host-based infiltration vectors, causing

considerable monetary losses to both vendors and users. From

digital currency mining pools [4], [5] to spam relays [1]

and from unlimited storage banks [38] to illegal file sharing

applications [50], hackers are exploiting clouds to great effect.

The situation is further exacerbated by the fact that these

break-ins often go completely unnoticed [3], [4], [2] as de-

fenses, such as antiviruses, are mostly deployed inside the

VM or container instance. In the case of VM hijacking,

such mitigation mechanisms are easy to bypass or turn off

if the attacker gets root access. Alternatively, in the case of

malicious deployments by attackers, using compromised user

accounts [5] or free resources [4], defense mechanisms are

altogether ignored as the attacker himself is the “admin”.

To prove the fact that vendors are unaware of these break-

ins, researchers recently managed to setup a large botnet on

Amazon EC2 that did not get flagged by any detection or

mitigation mechanism that EC2 might have had [4]. Given

these challenges and the stakes involved, vendors need to

deploy scalable defenses, “outside” of the containers/VMs.

As far as the cloud network is concerned, vendors have

resorted to hardware-based solutions, such as Anti-DDoS

Boxes [8], Intrusion Detection and Prevention Systems [9],

Vulnerability Scanners [11] etc. These middleboxes, though

very costly to deploy and even more expensive to maintain, of-

fer a certain degree of protection to the edge as well as the core

against common threats as hardware can handle load much

better than software and alleviates some of the scale issues

for the vendor. However, the real problem, where hardware-

based solutions are either non-existent or offer very limited

protection, is the cloud host forcing vendors to primarily rely

on software.

For proactive host-based security using software, numerous

works have argued in favor of system call (syscall) monitoring

to detect anomalies during runtime [25], [49], [29], [53],

[14], [56]. Researchers have since extended vanilla syscall

monitoring to the virtualized case, monitoring in a VM-

oblivious fashion [35], [31], [40], [18]. However, syscall

monitoring generates a lot of space (syscall logs) and runtime

overhead (syscall window matching) and its ability to scale

needs to be investigated further for the data center context.

Additionally, the approaches discussed in the literature make

little attempt to leverage the features of clouds (elasticity,

homogeneity/heterogeneity of workloads etc.) to strengthen

their designs. Another common approach to inspect VMs from

the hypervisor is Virtual Machine Introspection (VMI) [42],

[34], [20], [54]. However, VMI also suffers from the same

scalability issues mentioned previously [31]. Furthermore, it

often requires OS modification [18] or user participation [13]

forcing vendors to resort to VMI retroactively after an abuse

is reported.

To address these host-level security concerns, we propose

an anomaly detection fabric that takes the diverse nature of

data center workloads into account and offers customized

protection to each client via a paired mechanism of whitelisting
plus blacklisting. We apply the syscall monitoring work done

by earlier researchers to develop a highly scalable cloud-

centric system. By monitoring the sequence of system calls

originating from a “community” of VMs or containers (set

of instances performing the same task), during the training

phase, we can develop a profile for normal behavior and



flag any sequence that appears anomalous during runtime

(whitelisting). Such flagged sequences are then passed on for

further analysis to determine if they are malicious or not. If

deemed dangerous, they are prevented from execution on all

instances of the community (blacklisting).

Syscall monitoring has been shown to be a promising behav-

ioral malware detection technique, excelling at detecting zero-

day threats during their early stages [15] and mitigating DoS

attacks. Furthermore, syscall monitoring can also flag malware

that can evade traditional defenses [15], such as metamorphic

and polymorphic viruses. As a result, our syscall-based solu-

tion is accurate with very low false positives and can scale to

thousands of servers due to two main design features. Firstly,

we compress the data stream (logs of system calls) at its source

by the novel use of Cuckoo Filters [21] removing the space

overhead commonly associated with syscall solutions. Further-

more, this design choice also has the advantage of reducing

the compute overhead of matching against raw syscall logs as

anomaly detection is reduced to a mere membership test on the

Cuckoo Filter. Secondly, we perform malware analysis on the

flagged anomalous sequences on separate instances, which are

part of a large distributed fabric owned by the cloud vendor.

This allows us to leverage the strengths of clouds and scale the

system as needed during high usage times. This also removes

any single point of failure from the system. We also discuss

ways of extending our design to make detection and mitigation

more robust by using syscall monitoring in conjunction with

architectural and micro-architectural execution patterns, such

as Hardware Performance Counter (HPC) monitoring, which

is another promising area of research [19], [32], [48], [24].

Our design is based on two key insights. Firstly, for a

particular tenant deployment, groups of VMs are assigned the

same set of specialized tasks, which they perform repeatedly.

Common examples of these include sets of VMs responsi-

ble for graph processing in social networking deployments,

MapReduce deployments, database queries in large big data

deployments, image processing in medical science deploy-

ments etc. Such operations are scaled across a deployment of

several “sister” VMs, which we call a community [36], all of

which exhibit the same signature under normal circumstances.

A compromised VM or container, on the other hand, would

generate a different signature from its sisters and can be

flagged in real-time. The second insight we leverage is that

if a small percentage of VMs/containers belonging to a tenant

are suspended and their tasks migrated to new instances, the

tenant will not notice a major performance degradation caused

by the jitter. Hence, borrowing from the concept of “sacrificing

the few for the good of the many”, we leverage the first

few VMs that are the initial targets of a zero-day attack (we

cannot protect these VMs in any event) to protect the entire

deployment by sharing information on the behavior of the

attack and generating a “vaccine” that is broadcast to the entire

community. The attacked VMs are then suspended (and can be

quarantined for detailed forensic analysis) and substituted with

immunized ones that are resilient against the ongoing attack

(as they have the vaccine). This prevents a particular malicious

behavior from executing on the entire set of sister VMs and

contains the infection from spreading across the remaining

deployment while maintaining a steady supply of VMs.

Contributions:
• We present the design of a scalable and practical anomaly

detection fabric with negligible space and runtime over-

heads and highly accurate detection rates.

• We introduce the concept of VM communities, which

helps with creating strong signatures of normal behavior

and collaboration at a global level to detect and thwart

attacks.

• We present a model for generating a per community

vaccine that can thwart ongoing attacks instantly without

disrupting service to the tenant.

• We present a space-efficient way of representing and

processing syscalls using Cuckoo Filters.

• Finally, we augment our system with a hardware-based

behavioral monitoring scheme.

The rest of the paper is organized as follows; We presents

the overall architecture of our syscall monitoring framework

in Section II and the evaluations in Section III. We discuss a

few possible limitations of our system in Section IV followed

by the related works in Section V. Finally, we conclude this

work in Section VI.

II. ARCHITECTURE

Our scheme uses syscall monitoring techniques outlined in

past work [35], [40], [33], [37], [39], [25], [49] to develop a

comprehensive real-time anomaly/malware detection scheme

consistent with the requirements of modern day commercial

clouds. Our design is comprised of 3 components namely the

Instrumentation Agent, the Detection Agent and the Analysis

Agent as shown in Figure 1. The Instrumentation Agent and

Detection Agent reside on each host where as the Analysis

Agent is distributed across the cloud (in a scalable fabric)

to cut down round trip times and save bandwidth. Each

Instrumentation Agent monitors and logs the syscalls of each

VM and the Detection Agent checks all VMs from the same

community for anomalous sequences. The Analysis Agent

determines if the anomalies are malicious or not by performing

a correlation analysis on anomalous sequences observed across

different VMs. Our system is built on the STIDE model [23]

of syscall monitoring, which deals with time ordered sliding

sequences of syscalls, known as a tuple or a window. This

model allows us to perform set operations on the tuples of

syscalls, such as union, intersection, addition etc. which will

be used during various stages of our design below.

A. VM/Container Communities

The advent of cloud computing has substantially altered

conventional programming paradigms. New and emerging dis-

tributed and parallel computing schemes, such as MapReduce,

Scala and Cuda, have enabled users to unlock the true potential

of data centers. However, these new programming models

require that a computation be split up and divided across
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Fig. 1. Bird’s eye view of our system call-based design showing various components that comprise the anomaly-detection fabric.

numerous parallel workers specializing in repeatedly perform-

ing the same set of tasks. Additionally, it is considered good

deployment practice to have specialized VMs/containers per-

forming individual tasks rather than a mix of workloads. This

task specialization enables clouds to scale more effectively as

only the overloaded instances need to be scaled out based on

the increased demand of individual tasks. Modularization of

computation, thus leads to “pools” of VMs or containers all

performing the same task and exhibiting similar behavior. We

call such a pool a VM or container community. A single tenant

deployment often comprises multiple communities, such as

VMs responsible for the frontend would be considered one

community and instances responsible for the backend would

be another community. Additionally, one community may be

spaced out on multiple different servers or might have all its

members on the same cloud node based on the orchestration

algorithm of the cloud. Members of the same community are

called sister VMs/containers. We assume that identification of

VM communities is done via the collaboration of the user and

the vendor for simplicity. This would also help the vendor in

scheduling the VMs more effectively over the servers by a

coming up with a distribution whereby a compute intensive

VM is placed next to a VM that has a low demand for

processor usage to oversubscribe nodes as much as possible

and maximize profits. Community identification could also be

done without customer involvement by looking at the VM

footprints when the VMs first boot.

B. Building a Community-Wide Profile

System call monitors have to first build a profile of normal

behavior for the entity being monitored. This happens during

the training phase, whereby all sequences of system calls of

a fixed length, are monitored and logged as a set representing

normal process behavior. During actual execution, sequences

are again monitored and checked against this set for legiti-

macy. If a sequence falls outside of this set, it is flagged as

anomalous. In the case of clouds, before we begin the training

phase we first divide a tenant deployment into communities,

such that sets of VMs are categorized as being responsible

for certain specialized tasks. Once these communities have

been identified, we start profiling each VM in a community

separately. We initiate the profiling process by building profiles

for each sister VM individually and hence we can cover more

legitimate sequences of syscalls by merging all profiles when

the training phase ends (union of all observed syscall tuples).

This tactic, which leverages the elasticity of clouds, allows us

to work with shorter training periods by increasing the number

of sister VMs being profiled during the training phase. The

length of the training phase depends on the vendor. Typically,

longer training intervals yield more accurate detection rates

and since we parallelize the training we can exhibit high

accuracy despite shorter intervals should the vendor choose

so. Furthermore, the vendor can and should choose different

tuple sizes for each community to customize the features of the

monitoring framework based on the nature of the workload.

This design choice is consistent with past works, which have

shown different window sizes to be optimal for different types

of workloads, such as 6, 10, 11 etc. [12], [25], [29]. The profile

building task is the responsibility of the Instrumentation Agent.

C. Compressing the Data Stream

The first challenge that we address in our design is that

of space overhead generated due to syscall monitoring. As

shown in Section III, the size of raw syscall logs becomes so

huge after just a few minutes into the production phase that it

makes the approach impractical and averse to scaling. Hence,

we compress the data stream i.e., the sequences of syscalls by

using a Cuckoo Filter. A Cuckoo Filter (an improved version

of Bloom Filters with faster lookup times) is a simple data

structure that can house large amounts of data by using its

own space-efficient intermediate representation (array of bits)

based on hashing and respond to queries about set membership

pertaining to the data it has housed (has no false negatives).

The Cuckoo Filter takes a string as input and maps its hash

onto an array by setting numerous disjoint indexes to 1. This

scheme allows us to represent the complete legitimate behavior

of a tenant in the form of a single array and search for

anomalies by performing hash operations instead of parsing an

entire log. Each time a new sequence is observed, it is checked

against the Cuckoo Filter and if absent from the profile,

is flagged as anomalous. Additionally, the Detection Agent,
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Fig. 2. Detailed schematic diagram showing how anomalies are flagged individually but examined collectively to determine if they are malicious.

which is tasked with the detection of anomalous sequences,

further minimizes the space overhead by using just a single

Cuckoo Filter per community for all member VMs running on

that host to check for compliance against normal behavior.

D. Defending the Community

Researchers have argued that sharing information about

process infections amongst collaborating nodes can provide

security against said infections [36], [39]. Cloud computing is

perfect for such a collaborative community-based protection

model, as jobs are parallelized and distributed onto a large

number of worker nodes all performing the same operation,

MapReduce and graph processing are excellent examples

of this. Furthermore, vendors strongly advise against using

mixed workloads on top of single instances [12], which is

also in line with the community-based paradigm. Hence,

porting the community model to cloud implies that the first

few instances that get attacked share the characteristics and

features of the attack with the remaining sister VMs from the

community. In our design, these features of an ongoing attack

are characterized by time ordered sequences of syscalls. If

the same anomalous sequence of syscalls is observed across

a predetermined threshold number of sister VMs, it can be

flagged as malicious and broadcast to the entire community.

Of course, this anomalous sequence could be a legitimate

sequence that simply got missed during the training phase,

however, the probability that a missed legitimate sequence

starts appearing on a threshold number of VMs all at the same

time is small. Determining which sequences are anomalous is

the responsibility of the Detection Agent.

E. Generating a Vaccine

As mentioned, the vaccine alerts other VMs to dubious

or malicious sequences of syscalls. When a Detection Agent

comes across a sequence that is not present in its Cuckoo

Filter, it marks the sequence and saves it in another Cuckoo

Filter, known as the Anomaly Filter. The Detection Agent

inserts all anomalous tuples into the Anomaly Filter and after

a fixed time interval elapses (known as the monitoring cycle),

which is a tunable metric representing how tolerant the system

is to attacks, the Detection Agent sends its Anomaly Filter to

the Analysis Agent for further inspection. The Analysis Agent

is deployed as a distributed cloud tenant in our design, which

allows it to scale under load and have a divided footprint across

the data center to prevent any single point of failure. The Anal-

ysis Agent receives one Anomaly Filter per VM, at the end

of a monitoring cycle, from each Detection Agent supervising

a community giving the Analysis Agent a global view of the

state of the community. Since the Anomaly Filter is actually a

Cuckoo Filter, its simply an array of bits, the Analysis Agent

can perform some basic counting operations on it. Specifically,

the Analysis Agent adds together all Anomaly Filters it has

received from a community, which can be understood as the

union of all anomalous tuples, and determines which indexes

cross a certain predetermined threshold value (called vaccine

threshold). It then creates another Cuckoo Filter and sets

the corresponding indexes, which have crossed the threshold

value, to 1 and marks all others as 0. The resulting filter is

what we call a vaccine and houses the anomalous sequences,

which have already appeared on a threshold number of VMs

in the community. The vaccine thus generated can be thought

of as a blacklist and the Cuckoo Filter for normal behavior

is the whitelist. The entire operation is depicted in Figure 2.

Upon vaccine generation, the Analysis Agent broadcasts it to

all Detection Agents in the community and requests the cloud

orchestration framework to instantiate substitute VMs in place

of the compromised ones. As we show in Section III-G, the

vaccine threshold can be tweaked to reduce the detection delay

at the cost of false positives.



F. Containing the Infection

Once a Detection Agent receives the vaccine, it checks all

running sequences in each sister VM against the vaccine to

make sure that it too has not been compromised. If no hits

are observed the VM is believed to be contamination-free

and allowed to continue execution otherwise it is reported to

the Analysis Agent, which in turn notifies the orchestration

framework of the VM’s compromise. As a result, the spread

is contained before it causes further devastation. The client

experiences little or no degradation as substitute VMs are

quickly spun up to meet the demand.

G. Extending the Base Design

We also propose some ways to extend the base design of

our system to make it more robust and efficient.

1) Secondary Detection via HPCs:: Recent works [19],

[32], [48], [24] have shown that architectural and micro-

architectural execution patterns can be used to profile ap-

plication behavior. One prominent hardware component in

this category is the set of Hardware Performance Counters

(HPCs), which can be used effectively to detect a particular

behavior on a host. HPCs are low-level registers that keep

track of hardware level and even system level events during

a program’s execution. Common examples include number

of cache misses, number of TLB flushes etc. We propose

to use these HPCs in combination with our syscall-based

design. HPCs can be monitored in a scalable and speedy way

with very little overhead, giving them the same properties as

those of our syscall monitoring fabric. They do not violate

clients’ privacy and do not interfere with normal program

execution. As we show in Section III, it is easy to set up HPC

monitoring with syscall monitoring. Hence, HPCs can serve as

an excellent detection metric to “beef up” the security of the

system. Targeted attacks on individual VMs that do generate an

anomalous sequence but don’t get flagged in the thresholding

process can be easily detected via HPCs. A simple classifier

can be trained to identify anomalies based on observed HPC

values during monitoring cycles as we show in Section III-I

and III-J. The classifier can be used sparingly under special

circumstances in order to avoid load on the system.

2) Updating the Behavioral Profile:: The Detection Agent

sends all anomalous sequences to the Analysis Agent however,

not all sequences are malicious and some are in fact legitimate

sequences that got missed during the training phase. For

instance, a very rare control flow path in the application could

result in the occurrence of such a sequence. Our system keeps

track of all anomalous sequences observed by a community

that did not pass the threshold for maliciousness, as mentioned

above, and were only observed on very few sister VMs (a

benefit of the global visibility of the Analysis Agent). Even

though the sequence could still be malicious, for instance

from a stealthy malware, we would like to investigate it

further and add it to the normal profile of the community

if it turns out to be a benign sequence. This can be done

by checking the said sequence against a database of known

blacklisted syscall sequences [16] or by building a model of

the community’s syscall behavior and automatically generating

“bad” sequences, as done by Giffin et al. [26], and comparing

against those or another venue is to use our secondary HPC-

based detection system. If the syscall sequence comes out

clean we propose to add it to the community’s base profile

after a certain time interval has elapsed and the sequence is

recurring.

III. EVALUATION

As mentioned previously, there have been many proposals

in recent literature as to the mechanism for syscall monitoring.

However, to keep things simple, we resort to the Linux Perf

tool, which is much faster than strace [6] and allows us to work

directly with the KVM Hypervisor without any modifications

to the base hypervisor. Furthermore, Perf also allows us to

monitor Hardware Performance Counters, which we use as a

secondary detection mechanism. Our goal is not to compare

the various syscall approaches, in fact any of the described

approaches can be used in our system.

For the experiments we chose an Intel i7 3.40GHz x8

machine with 8GB of RAM, 8.5GB of swap space and a

500GB hard drive. For the host, we had Ubuntu 15.10 based

on 4.2.0 kernel version. For guests, we primarily stuck with

Cloudera Quickstart VM 5.5 which uses CentOS 6.7 however,

other OSes work equally well. The version of Perf was 4.2.8-

ckt5. Where applicable, we chose the window size to be 10,

monitoring cycle to be 10s and vaccine threshold to be 4

percent.

A. Runtime Overhead of Instrumentation

One primary concern of our design was the runtime over-

head generated by the instrumentation process. Since our

solution is designed for clouds where customers expect low

job completion times, we wanted to make sure our system

did not slow down jobs to unacceptable levels. To this

end, we chose 5 representative workloads, namely Hadoop

MapReduce Image Processing (HIPI), Kernel Compile, Video

Encoding/Decoding, File Copying and Encryption/Decryption,

and ran them with and without system call instrumentation in

place. During this exercise we observed the job completion

times of each task to get a sense of the runtime overhead added

by the instrumentation process. Figure 3 shows the average

numbers for the performed experiments over numerous runs.

As demonstrated, the added overhead in the job completion

times of each of the 5 cloud workloads is negligible. This

means that the instrumentation phase of our system is ex-

tremely low-overhead and resultantly scale-friendly. Further-

more, in general the overhead of Linux Containers (LXC) was

found to be lower than that of VMs.

B. Runtime Overhead of Detection

Our design is such that detection merely involves a constant

time operation on a Cuckoo Filter, which is a very high per-

formance data structure. However, to ascertain the scalability

of our system, we wanted to ensure that the detection phase,

like the instrumentation phase, incurs tolerable overheads and
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maintains this constant time characteristic when scaled to

higher VM counts per node. Hence, we ran the detection

mechanism across a large number of processes running simul-

taneously, as shown in Figure 4. These delays were incurred by

the detection process, which checks a tuple of system calls for

membership against the Cuckoo Filter and adds any anomalies

to the Anomaly Filter, for roughly 2 million system calls.

Results show that even when the VM count on a single node is

high, the system maintains its characteristic of constant time

detection backing our claims of scalability. Hence, in terms

per node compute overhead, including both instrumentation

and detection, our system is highly economical making it a

perfect candidate for host-based security in clouds as it has

no slowdown effect on the VMs.

C. Space Overhead of Instrumentation/Detection

One prominent feature of our approach is the space efficient

design, which is achieved via the use of Cuckoo Filters.

The idea behind Cuckoo Filters is to absorb a large dataset

and store it in a space efficient intermediate representation.

Despite the fact that the actual dataset is lost when converted

to a Cuckoo Filter, we can still run constant time queries

pertaining to the dataset such as the presence and absence of

certain elements in the dataset. For our purposes, the Cuckoo

Filter houses the entire normal behavior of the community

in question and we can run queries against it to find out

if a sequence is present or missing. This approach offers

a tremendous benefit in terms of space usage compared to

raw logs as done traditionally. Figure 5 attempts to quantify

the benefits of using a Cuckoo Filter as opposed to raw

syscall logs. The size of a Cuckoo Filter remains pretty much

constant even when the system has been running for a decent

amount of time as opposed to raw logs, which start to incur

a large amount of space overhead. This result, together with

the runtime overhead presented above, affirms our claims to
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Fig. 6. Relationship between the size of the Cuckoo Filter and false positives.

the overall scalability of our system.

D. Size of Cuckoo Filter vs Number of False Positives

As with other similar hash-based data structures, Cuckoo

Filters offer a tradeoff between size of the filter and the degree

of false positives. With larger sizes, Cuckoo Filters generate

smaller number of false positives as they are able capture and

record a wide range of legitimate behavior while minimizing

overlapping (two strings hashing to the same indexes). Smaller

filters on the other hand perform poorly as they are poor

representatives of the entire spectrum of normal behavior.

However, for our purposes, we wanted to investigate what size

of the Cuckoo Filter generates acceptable false positives so

that the network overhead can be minimized. If the size at

which false positives become acceptable is impractical then

Cuckoo Filters must be replaced with other alternate data

structures, such as Bloom Filters, which have been used by

other researchers to reduce the space overhead of various

systems [25]. In Figure 6, we show that our choice of a Cuckoo

Filter is indeed justified as false positives can be reduced to

negligible levels by using very nominal sizes of the filter. With

very small filters (<0.1MB) the corresponding false positives

are large due to the reason mentioned above. With a 1MB

Cuckoo Filter, our system exhibits almost 0% false positives,

which is remarkable given that we are able to represent the

entire normal behavior of an application in 1MB as opposed to

tens of GB of raw syscall logs needed otherwise. Also, worth

mentioning is that on a single node, we only have one such

Cuckoo Filter per community, which means that the per node

footprint of our system is very small.

E. Length of Training Interval vs Number of False Positives

Another important metric for evaluation is the length of the

training interval and how it impacts the accuracy of detection.

Since we are in a data center setting, the vendor will usually

not have enough time as the customer would want to move

onto the normal phase very quickly. Hence, to measure this

relationship between training interval and accuracy, we plot the

training interval duration on the X-axis and the corresponding
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percentage of false positives on the Y-axis in Figure 7. As

can be seen, there is decreasing trend in the number of false

positives as the training window increases. The percentage

can be brought down to acceptable levels within the hour

for various workloads. If numerous sister VMs are being

simultaneously profiled then this interval can be reduced even

further. Additionally, if workloads are similar across tenants,

the vendor can leverage the profile of one tenant and use it

directly (or with minimal training) for the other one.

F. Length of Window/Tuple of System Calls

Size of the tuple/window of system calls has been the

subject of contention in many prior works. Various researchers

have used different window sizes by empirically justifying

their use of the size in the form of low false positives. Size 6,

10, 11 and even 20 has been discussed and both pros and cons

of each size have been presented. Through our experiments

as shown in Figure 8, we found that as the window/tuple

size increases, it loses the granularity at which system call

patterns change. Thus it is unable to detect those patterns

and flag suspicious behaviour. This causes an increase in false

negatives. Hence, a balance needs to be struck between speed,

size and accuracy, which is different for different types of

workloads. Given this consideration we make this metric a

tunable feature of our design, with the vendor having the

flexibility to work with larger or smaller sizes based on the

nature of the jobs being run inside the community and training

time available to the vendor. It is pertinent to mention here,

that for our case, with larger window sizes, the system works

just as fast as the smaller window sizes because of our use

of the Cuckoo Filter. This is because the filter stores the

sequences of syscall in its own intermediate representation,

which is pretty much the same for any size of the tuple,

and does away with the concept of an exhaustive entry by

entry perfect matching approach. Also, the numbers shown

in Figure 8 improve substantially if a larger training window
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Fig. 8. Varying rate of false negatives for different window/tuple sizes for
different workloads.

is used, however, since our system is designed for clouds

and customers want to move to the production environment

quickly, we limited ourselves to a training window of 1 hour

to get these results.

G. Vaccine Threshold and Monitoring Cycle vs False Posi-
tives, Detection Rate and Malware Spread

The threshold value used to generate the vaccine is again a

tunable parameter. Smaller values result in quicker generation

of the vaccine however, this improved latency comes at the

cost of increased false positives. In contrast, a larger threshold

value would mean that the Analysis Agent will wait to see

more anomalous sequences in each of the incoming Anomaly

Filters before flagging them as malicious. This would result

in a slight delay that might allow the malware to spread

across more members of the community. However, this will

also reduce the chance of false positives as a rare legitimate

sequence, which was missed out during the training phase,

will not get flagged. Fig 9 captures this trade-off inherent to

our system. The bars on the top are associated with the Y-axis

on the right and the bars below are tied to the Y-axis on the

left. Along similar lines, we ran a variant of this experiment

to test the relationship between the spread of malware to

that of vaccine threshold and monitoring cycle. To explore

this relationship we exploited a vulnerability in the guest OS,

which allowed us to execute the contents of a UDP packet.

Once the payload would execute, it would connect to a CnC

server and search for jpg files in the gest OS file system and

send their paths to the CnC server. The malware would then

infect other VMs by sending the same UDP packet to other

VMs with similar IP prefixes in the subnet. We repeated this

scenario numerous times with three different attack rates (5,

10 and 20 second wait times before sending the UDP packet

to another VM mimicking a slow, normal and fast malware

respectively). We deployed a total of 15 VMs and tested for

three different vaccine thresholds (10, 40 and 70% of the total

VMs) while keeping the value of the anomaly window constant

at either 5, 10 or 15 seconds for the duration of the experiment.

As shown in Fig 10, smaller thresholds and shorter monitoring

cycles can thwart an attack very quickly preventing a large part
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the vaccine is generated, which in turn prevents malware from spreading to
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Fig. 11. Demonstrating the additional syscalls generated by infected versions
of a Hadoop workload over 60 minutes of runtime.

of the deployment from being infected. Larger thresholds and

longer monitoring cycles, despite giving low false positives as

shown previously, take longer to detect the malware and allow

it to infect more VMs in the community.

H. Anomaly Detection of Infected Workloads

To test the entire system as a whole and check the efficiency

of malware detection, we ran four versions of the MapReduce

Image Processing workload side by side. For the first case,

we used the unmodified version of the workload out of the

box however, for the remaining three cases we infected the

workload with a particular type of malware, such as a Heart-

bleed vulnerability scanner (shown in green), a Bitcoin mining

trojan (shown in red) and finally a small stress tool (shown

in blue), which attempts to waste system resources needlessly.

We then profiled each of the four workloads for a total of 60

minutes observing the number of sequences generated over 10

minute intervals by each workload individually. As shown in

Figure 11, the three compromised versions of the workload

generated substantially more sequences as opposed to the

normal version, with the stress tool generating the highest

number of additional tuples followed by the Bitcoin miner

and the Heartbleed scanner coming in at last. These additional

sequences are successfully flagged by the anomaly detection

mechanism and passed onwards for malware analysis.

I. Overhead of HPC Monitoring Extension

As an extension to our main design, we propose adding

a secondary anomaly detection system based on Hardware

Performance Counters. To demonstrate the feasibility of the

HPC plus syscall approach working in combination, we ran

both systems together and noted the job completion times for

various cloud-representative workloads. Since the Perf tool

allows us to monitor HPCs as well, this turned out to be a

straightforward extension with numerous benefits. As shown

in Figure 12, the added instrumentation overhead, resulting

from HPC monitoring, is affordable for most applications and

hence, the HPC-based detection can be used in a supportive

role with our main syscall-based approach.
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Fig. 12. Overhead of Hardware Performance Counter monitoring in combi-
nation with syscall monitoring as opposed to only syscall monitoring.

J. Effectiveness of HPC Extension

To test the effectiveness of our HPC-based extension, we

trained a classifier to detect a mining trojan on a running

VM that does not spread in order to evade the thresholding

process. A total of 26 HPCs (all supported by our Intel

machine) were used during this experiment, most of which

targeted cache and TLB operations and some of which were

generic such as branch misses, context switches etc. Since

we did not know the underlying distribution of the various

performance counters altered during mining, we tried different

non-parametric classifiers including k-Nearest Neighbor (k-

NN), Bagged and Multiclass Decision Trees etc. We found

that ensemble-based classifiers outperformed others at least

as far as mining trojans are concerned. During the training

phase, we trained the classifier over a wide range of data center

workloads borrowed from CloudSuite v3.0 [22], SPEC 2006

benchmark [7] and common Hadoop tasks with and without

the miners running in the background. In the test phase,

we fed the classifier unseen mining trojans. The classifier

gave an average F-score of 96.37% with a false positive

rate of 6.24% and a false negative rate of 1.25%. For an

open world setting (flagging unseen trojans), these are decent

results. Furthermore, to match a new sample the classifier

took less than 10ms on average. Figure 13 shows HPC-based

signatures for various cloud workloads as well as the miner.

The two subgraphs show a live-trace of a particular counter’s

value during the execution of a CPU-based miner and four

non-mining applications; namely data caching (memcached

server), AI (game of Go), H264 (hardware video encoding) and

NAMD (molecular dynamics). The values of other counters

and workloads have been omitted for clarity. Signatures were

generated by running the workloads in a VM and profiling

the HPCs via the Perf tool. As can be seen, the signatures are

vividly discernible, which means that HPCs generate a strong

behavioral profile that can be used to flag malware in real

time.

IV. ATTACKS AND LIMITATIONS

One primary concern for previous syscall-based systems

has been the mimicry attack [26],[52], where by an attacker

tries to carry out malicious activities while mimicking le-

gitimate sequences of syscalls. However, since our syscall

mechanism treats a VM as a blackbox and not as a group

of separable processes running on an OS, it is much more

robust against mimicry attacks, as demonstrated by other re-

searchers as well [12]. Additionally, mimicry attacks perform

poorly against systems which incorporate the arguments of the

syscalls into detection scheme [12]. Given the flexibility of

our design and Perf’s ability to collect arguments of syscalls,

we implemented this feature into our design as a simple and

straightforward extension making it more robust. Still, it is

possible, albeit highly improbable and very hard for an attacker

to launch a mimicry attack against our system so we list it as

a limitation here.

Targeted attacks on a single instance (to steal data for

instance) will not be detected by our syscall system, since our

focus is on protecting a larger deployment from spreading at-

tacks such as worms, as opposed to individual VMs. However,

the HPC-based extended framework can detect these and other

single host attacks as shown in Section III-J. Similarly, VMs

running heterogeneous workloads, in which case the notion of

a community will not hold, are not applicable to our system.

Though considered against best practices, such deployments

can be found in clouds and our system will not work on such

instances.

Another possibility is for an attacker to subvert the kernel

running inside the OS and modify the tracing infrastructure

by changing the location and layout of critical kernel data

structures, syscall service routines, function pointers etc.,

which are needed by various monitoring tools that gather

system call dumps. However, the attacker would first need to

get root access, which will generate an anomalous sequence

and get flagged. However, it is still possible for an attacker,

though quite hard, to achieve this via a mimicry attack or

by avoiding syscalls altogether making it a limitation of our

system.

Finally, it is pertinent to point out that our system should

always be deployed in combination with network-based de-

fenses, as it is difficult for a host-based anomaly detection

scheme to detect attacks originating from and targeting net-

works.

V. RELATED WORKS

The literature is abundant with research focusing on system

call monitoring in the traditional case [25], [49], [29], [53],

[14], [56], [15], [16], [26] and the virtualized case [33],

[35], [40], [12], however, no work prior to ours, has targeted

a fully scalable and extensible, cloud centric system call

monitoring framework that can be practically deployed in a

commercial data center. The closest work to ours is from

Alarifi and Wolthusen [12], who present a syscall analysis
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Fig. 13. Behavioral profile of a Litecoin CPU miner and four representative cloud-based CPU applications. The x-axis shows time in increments of 100
milliseconds. The miner is shown in red.

framework for the IaaS model based on strace [10]. Their

design, however, does not target scalability and does not

leverage features innate to the cloud like ours. Furthermore,

they do not address the problem of space overhead resulting

from the syscall instrumentation as we do. Additionally, we

also present avenues for the extension of our work, such as the

added HPC monitoring framework, which itself has been the

subject of various research endeavors [19], [32], [48], [24],

however it has not been discussed in the context of syscall

monitoring prior to this work. Others have demonstrated how

to sample and collect system calls in virtual environments in a

VM-oblivious fashion [35], [33], [40] and serve as inspiration

to this work.

The fundamentals of the syscall monitoring were laid out

by Forest et al. [23], Hofmeyr et al. [29] and Warrender

et al. [53], in their pioneering works by demonstrating how

sequences of system call originating from a process could be

monitored for anomalous behavior. The systems involved a

training phase during which sequences of system calls were

recorded forming a set, which served as the baseline for

“normal” behavior. Once actual execution began, outside of

the training phase, all sequences that were absent from the

set of normal behavior were flagged as anomalous. However,

the approaches discussed had an inherent tradeoff pertaining

to the duration of the training period; larger sizes resulted

in lesser false positives but higher false negatives where as

smaller durations would substantially increase false positives.

Subsequently, Locasto et al. [36] demonstrated a way to

reduce false positives without compromising on the false

negatives by leveraging the uniformity of behavior in “ap-

plication communities”. Other researchers [39], [37] explored

the temporal correlation between flagged system calls across

distinct instances of the same program to improve detection

rates further.

The second theme, found in our work, is that of cloud

abuse. Researchers have tried to identify the vulnerabilities

in clouds and how they can be abused to attack others [51],

[30], [46], [57]. This has led to numerous works showing

how data centers can be exploited in novel ways by building

file sharing applications [50], unlimited storage banks [38],

email-based storage overlays[45] and mining botnets [4] on

top of regular cloud services in a manner oblivious to the

cloud vendor. Similarly, various research endeavors have tried

to identify the existence of covert and side channels between

VMs that are coresident on the same server [28], [27], [43],

[55] or share underlying network infrastructure [47], which

also create opportunities for cloud abuse and can be used to

great effect for data exfiltration.

To detect this cloud abuse at the host-level, other researchers

have proposed a technique known as Virtual Machine Intro-

spection (VMI), which gives vendors the ability to look inside

the contents of a VM and detect unwarranted activity [42],

[34], [20], [13], [31], [54]. However, VMI sometimes requires

user participation [13] or OS modification [41] and can have

large overheads[31], [20]. Additionally, traditional VMI ap-

proaches lack the scalability needed in the cloud setting, which

makes them unsuitable for our case. Resultantly, cloud vendors

mostly resort to VMI retroactively once an abuse is reported

to have occurred. Others have tried to bridge the semantic

gap between the guest’s view of its internal state and the

hypervisor’s view of the VM [31]. Finally, a separate body

of literature aims at creating secure execution environments,

such as SecVisor [44] and Secure Virtual Architecture [17],

however these approaches require modifications to the OS

or the application and can be used in combination with our

approach.

VI. CONCLUSION

Given the rise in instances of cloud abuse, robust and

scalable host-based anomaly detection systems are needed that

can scale to cover the overarching expanse of clouds and

provide customized protection to each client. In this paper,

we present one such scheme, which has a cloud-centric design

– in that it specifically targets clouds and also leverages the

properties of clouds, the scheme is highly scalable – it has a

negligible per node space and runtime overhead, the scheme

is extensible – such as adding more features and properties

for enhanced detection, and the scheme is customizable – in

that the vendor can tune various properties of the system to

adjust detection in accordance with the nature of the client

workloads. Our system makes use of common profiling tools



easily available in off the shelf hypervisors. The proposed

syscall monitoring-based approach uses Cuckoo Filters to cap-

ture normal behavior and generates malware signatures, based

on the temporal correlation between instances of anomalous

behavior across machines, which protect tenant deployments

from attacks. We perform a thorough empirical analysis to

test our system and substantiate our claims of scalability,

effectiveness and extensibility.
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